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Abstract: In the backdrop of increasing pressure on highway traffic flow control, this paper proposed a reinforcement learning
(RL) based event-triggered model predictive control (eMPC) method for the local ramp metering problem. Embed into the
eMPC controller structure, the RL agent is responsible for providing triggering commands. The RL agent learns the event-
triggered policy by continuously interacting with the environment. Meanwhile, an effective MPC controller is designed to handle
the constraints and objectives in the ramp metering problem, and provide optimal control sequences. By applying the novel RL-
eMPC method, the traffic efficiency can be significantly improved with less computational costs. This is due to the combination
of the optimal control sequences of MPC controller and the intelligent triggering rule of RL agent.
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1 Introduction

In recent decades, there has been a substantial escalation

in the demand for traffic mobility, yielding advantageous im-

plications for societal advancement while concurrently en-

gendering many adverse outcomes for drivers and traffic

controllers. The scholarly and industrial communities have

extensively investigated traffic control methodologies with

the aim of improving traffic safety and efficiency, which pro-

motes the exploration of diverse strategies and methodolo-

gies. The domain of traffic control includes both urban and

highway networks, this paper focuses specifically on high-

way traffic flow control.

Highway traffic flow control strategies mainly include

ramp management, mainstream management and route guid-

ance. Ramp management limits traffic flow entering the free-

way to relieve congestion. Mainstream management regu-

lates traffic flow already present in the mainstream, by us-

ing methods such as dynamic speed limits. Route guid-

ance routes traffic flow on alternative paths of a network

to disperse demand. In order to achieve safety and effi-

ciency goals, the highway traffic control problem is con-

structed as an optimization model and the optimal strategies

are obtained through solving the model. The model-based

optimal control method MPC has been widely applied in

the highway traffic flow control optimization problem [1–3].

Meanwhile, the learning-based optimal control method RL

is a recent technique that has shown its success and poten-

tial in the field of control, including highway traffic control

[4, 5]. Both MPC and RL method shave their advantages

and disadvantages in dealing with optimal control problems.

MPC method requires a significant amount of computing re-

sources during real time control. Conversely, RL method

exhibits an innate capacity to address intricate challenges

with minimal online computational overhead. Nevertheless,

the process of training a proficient RL is typically time-

consuming, particularly for intricate systems [6].
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of Zhejiang Provincial Department of Transport under grant no. 2023013,

the Independent Research Project of Zhejiang Scientific Research Institute

of Transport under grant no. ZK202411.

To address the above challenges in MPC and RL methods

for highway traffic flow control, this paper proposed an RL-

eMPC method. In the proposed method, MPC is responsible

for handling complex constraints and objectives. While, RL

is responsible for outputting triggering commands, which is

simpler compared to directly providing control strategies.

Thanks to the optimized triggering commands, the MPC

controller can complete the entire control cycle task with

lower computational costs.

1.1 Related Work
In this section, an overview of related work that applies

MPC, RL, and MPC with RL methods to solve highway traf-

fic flow control problems is given.

MPC is a widely recognized method for real-time control

of dynamic systems. It operates by predicting the system

states over a finite time horizon and optimizing a suitable

objective function. This is accomplished through an itera-

tive solution of a Finite-Horizon Optimal Control Problem

(FHOCP), which is updated using real-time system states.

The macroscopic traffic flow models CTM and METANET

[7] are frequently employed for the purpose of prediction in

highway traffic control problems. In [1], the traffic control

problem was solved by MPC, where the METANET model

was used as the prediction model. In [2], MPC controllers

with standard and modified CTM models were compared

via simulation. Moreover, in order to reduce the computa-

tional cost for real-time application, an event-triggered con-

trol scheme is applied to avoid unnecessary calculations. In

[3], a control scheme was proposed to reduce the computa-

tional load with a feedback MPC controller in which suitable

triggering conditions were defined.

RL-based artificial intelligence has achieved remarkable

progress by surpassing top human professionals in complex

multiplayer games. These achievements serve as a com-

pelling demonstration of the immense potential inherent in

RL methods. Taking traffic flow simulations as training en-

vironments, Wang et al. [8] introduced actor-critic-based RL

methods to learn actions, with the reward function taking

into account the waiting time, average speed and on-ramp
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queuing limit. In [4], a more effective RL method is devel-

oped for differential variable speed limit control, which was

trained and tested under a microscopic simulator. In [5], the

RL model was trained using a combination of historic data

and synthetic data generated from a traffic flow model.

Combining RL and MPC can fully leverage the advan-

tages of model-based and learning-based strategies in control

problems. In [9], an RL model algorithm was developed to

obtain the closed-loop optimal/suboptimal solutions, so that

the computational costs were reduced in MPC controllers.

By using the RL method to solve the optimization problem

in the MPC framework, an accurate and highly efficient solu-

tion can be obtained [10]. In [11], an RL model was used to

trigger MPC aiming to balance the closed-loop control per-

formance and event frequency. A few studies have investi-

gated this topic and applied RL-MPC methods in the field of

highway traffic control. Sun et al. [6] proposed a hierarchi-

cal structure combining RL and MPC, in which a high-level

MPC component provided a baseline control input, while a

low-level RL component modified the output generated by

MPC. Airaldi et al. [12] utilized RL to adjust the parametri-

sation of MPC based on observed data, in which the accuracy

of the METANET model was improved to enhance closed-

loop performance.

1.2 Proposed Approach and Contributions
Few researchers have addressed the method of combining

MPC and RL for the highway traffic control problem. The

contribution of this paper is proposing an RL-based eMPC

(RL-eMPC) for the highway local ramp metering, as shown

in Fig. 1, in order to incorporate the advantages of both MPC

and RL methods. In particular, an efficient MPC controller is

designed to handle the constraints and objectives in the ramp

metering problem, and provide optimal control sequences.

Meanwhile, an RL agent in the control structure of eMPC

provides optimal triggering commands to avoid unnecessary

calculations, which can reduce the computational cost of the

controller.

Fig. 1: The framework of RL-eMPC

The structure of this paper is organized as follows: Section

2 presents the METANET model and related MPC algorithm

for the highway ramp metering problem. Section 3 provides

details on the novel RL-based eMPC method that is proposed

in this paper. Section 4 gives numerical case studies that

implement the proposed RL-based eMPC method on a three-

segment highway network. Finally, Section 5 concludes this

paper and proposes topics for future work.

2 Problem Formulation

2.1 METANET modelling
In this paper, the macroscopic second-order METANET

framework is used to formulate a discrete-time dynamical

representation of the highway traffic under local ramp me-

tering. In the METANET framework, the discrete time step

is denoted by T . Each segment i, i ∈ Iall, at discrete time

t = kT is characterized by the following variables:

• Traffic density ρi(k) (vel/km/lane) is the number of ve-

hicles in segment i at time kT divided by length Li and

the number of lanes μi.

• Mean speed vi(k) (km/h) is the mean speed of the ve-

hicles included in segment i at time kT .

• Traffic flow qi(k) (vel/h) is the number of vehicles leav-

ing segment i during the time step [kT, (k + 1)T ), di-

vided by T .

Fig. 2: Characteristic of segment i at time kT

The previously defined traffic variables, as shown in Fig.

2, are calculated for each segment i at each time step k by

the following equations:

ρi(k + 1) = ρi(k) +
T

λiLi
(qi−1(k)− qi(k) + ri(k)) (1)

qi(k) = λiρi(k)vi(k) (2)

vi(k + 1) = vi(k) +
T

τ
(V (ρi(k))− vi(k))

+
T

Li
vi(k)(vi−1(k)− vi(k))

− νT

τLi

ρi+1(k)− ρi(k)

ρi(k) + κ

− μT

Liλi

vi(k)

ρi(k) + κ
ri(k)

(3)

V (ρi(k)) = vfree exp(− 1

α
(
ρi(k)

ρcrit
)α) (4)

where, λi is the number of lanes in segment i; Li is the

length of segment i; τ , ν, κ, μ and α are model parameters;

vfree is the free speed; ρcrit is the critical density. In partic-

ular, ri(k) is the incoming flow generated by the on-ramp

connected to segment i. Let Ion denotes the set of segments

with on-ramp connections. If the segment is connected with

a ramp, i.e. i ∈ Ion, ri(k) can be calculated based on the re-

lation between the queue length wi(k), capacity of on-ramp

Ci and traffic density ρi; if none is connected, i.e. i /∈ Ion,
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ρi is equal to zero, which can be described as:

ri(k) =

⎧⎨
⎩

ui(k)min{di(k) + wi(k)
T , Ci, Ci(

ρmax−ρi(k)
ρmax−ρcrit

)},
i ∈ Ion

0, i /∈ Ion
(5)

where, ui(k) is the metering rate, ui(k) ∈ [0, 1], which is

regarded as the control action; ρmax is maximum density; wi

denotes the queue length of on-ramp connected to segment i
at time step k, which can be calculated as:

wi(k + 1) = wi(k) + T (di(k)− ri(k)), i ∈ Ion (6)

where, di(k) is the demand flow of on-ramp connected to

segment i at time step k, which acts as an uncontrollable

external input.

2.2 MPC formulation
MPC is a widely recognized control framework that

was initially employed in conjunction with the METANET

framework, as documented in [1]. In MPC, optimal con-

trol actions are implemented repeatedly in a rolling horizon

manner. Let M relates the control time step kc and simula-

tion time step k as k = Mkc. At each control time step kc,

an optimal control problem is solved based on the measured

states at step kc over a Np step prediction horizon, and a set

of optimal control sequences can be obtained. Then, only

the first control action of the optimal control sequence is ap-

plied to the system. At the next control time step kc + 1, the

optimal control problem is solved again based on the newly

updated system states at step kc + 1, and also only the first

control action is applied to the system, and repeat.

The objectives of the traditional highway ramp metering

are to minimize the total travel time and the penalty cost

about the variability of control actions. The total travel time

can be calculated as:

LT (xk) = T

(∑
i∈Iall

Liλiρi(k) +
∑
i∈Ion

wi(k)

)
(7)

where, xk is the state vector at time step k. The penalty cost

about the variability of control actions can be calculated as:

LU (uk) =
∑
i∈Ion

(ui(k)− ui(k − 1))2 (8)

where, uk is the control action vector at time step k. Addi-

tionally, in order to avoid safety scenarios caused by the long

queue length, a soft constraint is introduced [1]:{
wi(k)− wmax ≤ σi(k)
0 ≤ σi(k)

, i ∈ Ion (9)

where, wmax is the maximum limit value for the queue

length; σi(k) is a slack variable, which represents the penalty

factor for queuing over the limit. The penalty factor should

be considered in the objective function, which is minimized

to avoid long queue length at on-ramps:

LW (σk) =
∑
i∈Ion

σk (10)

where, σk is the penalty factor vector at time step k.

To reduce the complexity of the model, the following two

modifications are applied. Firstly, considering that Eq. (4)

is highly nonlinear, it is difficult to solve the optimization

model containing this kind of equation. Thus, it is approxi-

mated by the piecewise approximation (PWA) method as:

VPWA(ρi(k)) =

{
α1ρi(k) + β1, 0 ≤ ρi(k) ≤ ρmid

α2ρi(k) + β2, ρmid < ρi(k) ≤ ρmax

(11)

where, ρmid represents a parameter generated in approxima-

tion, the coefficients α1, α2, β1 and β2 can be generated in

approximation. Then, a binary variable δi(k) is introduced

to describe the logical conditions, defined as:

[ρi(k) ≤ ρmid] ↔ [δi(k) = 1] (12)

The implication of binary variable δi(k) can be modeled by

the following linear constraints [13]:{
ρi(k)− ρmid ≤ ρM (1− δi(k))
ρi(k)− ρmid ≥ ε+ (ρm − ε)δi(k)

(13)

where, ε is a small tolerance, typically the machine preci-

sion; ρM = ρmax − ρmid; ρm = −ρmid. With the binary

variable δi(k), Eq. (11) can be transformed to a simpler

form:

VPWA(ρi(k)) = δi(k)(α1ρi(k) + β1)

+ (1− δi(k))(α2ρi(k) + β2)
(14)

Secondly, the min operator in Eq. (5) can cause the gra-

dient to be zero over a vast region of the state-action space

[12]. Thus, the control action is adjusted from metering rate

ui(k) to on-ramp flow ri(k). According to Eq. (5), the fol-

lowing constraints should be considered to make sure that

the new control action ri(k) is feasible:⎧⎪⎨
⎪⎩

ri(k) ≤ di(k) +
wi(k)
T

ri(k) ≤ Ci

ri(k) ≤ Ci(
ρmax−ρi(k)
ρmax−ρcrit

)

, i ∈ Ion (15)

Meanwhile, the cost term Eq. (8) is updated to:

LR(rk) =
∑
i∈Ion

(
ri(k)− ri(k − 1)

Ci

)2

(16)

where, rk is the on-ramp flow vector at time step k.

Overall, the optimal control problem with METANET

modelling for the MPC formulation is given by:

min

MNp∑
j=1

LT (xj|kc
) + ξR

Np−1∑
j=0

LR(rjc(j)|kc
)

+ ξW

MNp∑
j=1

LW (σj|kc
)

(17)

subject to:

x0|kc
= xkc (18)

xj+1|kc
= f(xj|kc

, rjc(j)|kc
, δj|kc

), j = 0, ...,MNp − 1
(19)

g(xj|kc
, rjc(j)|kc

, δj|kc
, σj|kc

) ≤ 0, j = 0, ...,MNp (20)
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where, δk is the binary variable vector at time step k; ξR and

ξW are the weight coefficients; the definition of jc(j) entails

that the control action is kept constant for a complete con-

trol time step (including M simulation time steps), which is

defined as jc(j) = �j/M�. As aforementioned, once the

formulated optimal control problem is solved, the first opti-

mal control action r∗0|kc
is applied from simulation time step

Mkc to (m+1)Kc−1, as per the receding horizon approach.

3 eMPC with RL-based Policy Learning

3.1 RL-eMPC framework
The framework of RL-eMPC is shown in Fig. 1. The RL

agent learns the event-triggered policy πθ by continuously

interacting with the environment. For the problem studied in

this paper, the environment consists of a plant and an eMPC

controller. At each time step, the RL agent sends a triggering

command to the environment based on the current system

states x̂k, which can be described as:

âk ∼ πθ(ŝk) (21)

where, âk represents the triggering command at time step

k; θ represents the parameters characterizing the event-

triggered policy. Based on the triggering command, the

eMPC will be triggered when âk = 1 and will not be trig-

gered when âk = 0. Then, the plant moves to the next time

step based on the updated (âk = 1) or un-updated (âk = 0)

control sequence. The RL agent observes the system states

and reward signals, then updates θ.

The complete RL-eMPC algorithm is shown in Algorithm

1. In this algorithm, E represents the total number of training

episode; K represents the total time step of each episodes;

Uopt represents the optimal control sequence obtained by

solving the optimization problem in the MPC framework;

iu represents the index of control action in the optimal con-

trol sequence; r̂k represents the reward. The RL agent in-

teracts with the environment for E number of episodes. At

each episode, the MPC controller is triggered to calculate

the optimal control sequence Uopt, and control action uk is

obtained based on Uopt to update system dynamics. In addi-

tion, the policy parameter θ is updated using observed states,

reward and action {ŝk, âk, r̂k, ŝk+1}. After each episode,

the environment is reset for the next episode. When finish-

ing E number of episodes, the algorithm outputs the event-

triggered policy πθ.

3.2 RL algorithm
In this paper, Q-learning is investigated to update the pol-

icy in the RL agent. Q-learning is a model-free method that

works well on discrete action and state spaces. In the train-

ing process, the action, state and reward of Q-learning are

updated every time step, and are defined as it follows.

Action âk: The action space in Q-learning refers to the

set of all possible actions that the agent can take in a given

state of the environment. For the focused problem, the action

space is defined as {0, 1}, where 0 means no trigger event

and 1 indicates a trigger event.

State ŝk: The state space in Q-learning refers to the set

of all possible states that the environment can be in. For the

focused problem, the state space is defined as {ρ̂, ŵ}, where

ρ̂ is the observed traffic density and ŵ is the observed queue

length.

Algorithm 1 RL-eMPC algorithm

Input: E, K, MPC controller

Output: πθ

1: Initialize θ
2: for episode = 0 to E − 1 do
3: Initialize ŝk, Uopt, iu ← 0
4: for k = 0 to K − 1 do
5: Select action âk ∼ πθ(ŝk)
6: if âk == 1 then � MPC controller is triggered

7: Uopt ← Solving the optimization problem

8: iu = 0
9: else � MPC controller is untriggered

10: iu ← iu + 1
11: end if
12: uk ← Uopt(iu)
13: r̂k, ŝk+1 ← Simulate system dynamics using uk

14: Update θ based on {ŝk, âk, r̂k, ŝk+1}
15: k ← k + 1
16: end for
17: end for

Reward r̂k: In Q-learning, the agent receives a reward

signal from the environment after taking an action. For the

focused problem, the reward is defined as:

r̂k � 1

LT
+

1

ξRLR
+

1

ξWLW
− ξaâk (22)

where, the first three elements measure the closed-loop con-

trol performance corresponding to the MPC controller and

the last element encourages fewer events to reduce online

computation [11].

The Q-learning algorithm updates its Q-values Q(ŝk, âk)
based on the Bellman equation, which is a recursive equa-

tion that expresses the value of a state-action pair in terms

of the immediate reward and the estimated value of the next

state. The policy πθ in the algorithm 1 specifically refers to

the Q-values Q(ŝk, âk) in Q-learning algorithm. The update

equation for Q-learning is given by:

Q(ŝk, âk) ← Q(ŝk, ŝk)

+ ϕ

[
r̂k + γmax

âk+1

Q(ŝk+1, âk+1)−Q(ŝk, âk)

]
(23)

where, Q(ŝk, âk) represents the Q-value of taking action âk
at state ŝk; ϕ is the learning rate representing the impact of

new information on the Q-values; γ represents the discount

factor that balances immediate rewards with future rewards.

4 Numerical Case Study

4.1 Settings
A simple highway network with three segments (see Fig.

3) is considered in numerical case studies, and each segment

with 1 km length consists of two lanes, Li = 1 km, λi =
2. Segment 1 is supplied by the uncontrolled mainstream

original demand d0, and is characterized by a capacity 3500

vel/h, C0 = 3500 vel/h. Segment 3 is additionally supplied

by the uncontrolled on-ramp demand d3, and is characterized

by a capacity 2000 vel/h, C3 = 2000 vel/h. The density

ρ4 is used to simulate downstream congestion. The network

parameters as found in [1] are used: T = 10 s, τ = 18 s, ν =
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60 km2/h, κ = 40 vel/km/lane, μ = 0.0122, ρmax = 180
vel/km/lane, ρcrit = 33.5 vel/km/lane, vfree = 102 km/h,

α = 1.867. The parameters in the MPC framework are used:

Np = 4, M = 6, ξ = 1, ξR = 1, ξR = 1, wmax = 50 vel.

The parameters in the PWA function are used: ρmid = 75.98
vel/km/lane, α1 = −1.3, α2 = −0.031, β1 = 102, β2 =
5.58. The parameters in the Q-learning algorithm are used:

E = 500, K = 1000, ξa = 1, ϕ = 0.1, γ = 0.99.

Fig. 3: Structure of the three-segment highway network

To validate the effectiveness of the proposed RL-eMPC

method, it is compared with the traditional eMPC method,

no control method. More details about these four methods

are as follows:

• NC: No-control method, in which the control action is

fixed as 1.

• eMPC: event-triggered method, in which the optimiza-

tion is triggered based on the observed states, including

the traffic density of segment 2 ρ2(k) and the queue

length of on-ramp connected to segment 3 w3(k). The

event-triggered policy of eMPC is defined as:

âk =

{
1, if ρ2(k) > ρcrit or w3(k) > wmax

0, else
(24)

• RL-eMPC: RL-based event-triggered MPC method, in

which the optimization is triggered based on the trained

Q-values. Specially, the state space {ρ̂, ŵ} is definded

as:

ρ̂ = �ρ2(k)/10� (25)

ŵ =

{ �w3(k)/10� , if �w3(k)/10� < 9
9, else

(26)

4.2 Simulation results and analysis
The traffic density, queue length and triggering command

for three different control methods are shown in Fig. 4, Fig.

5 and Fig. 6 respectively, and the performance is shown

in Table 1. In Fig. 4, Fig. 5 and Fig. 6, the traffic den-

sity changes in three segments (s-1, s-2, s-3) and the queue

length connected to segment 1 and 3 (w-1, w-3) are de-

scribed. Meanwhile, the total travel times (TTT) of the three

methods are compared in Table 1, which can be calculated

based on the Eq. (7). The total cost in Table 1 means the

sum of all objective costs in Eq. (17).

Table 1: Performance comparison between three methods

Type of method TTT [h] Total cost Triggering times

NC 643.0 20190.4 0

eMPC 632.1 18969.2 64

RL-eMPC 618.7 17915.8 93

As shown in Fig. 4, during the whole control process,

the triggering command is zero, which means that the MPC

controller has never been triggered in NC method. On

Fig. 4: Results for NC method

Fig. 5: Results for eMPC method
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Fig. 6: Results for RL-eMPC method

the other hand, the MPC controller is triggered 64 times

in eMPC method, and 93 times in RL-eMPC method. In

eMPC method, the MPC controller is mainly triggered in

time steps from 400 to 700, when ρ2(k) > 33.5 veh/km/lane

or w3(k) > 50 vel. This is consistent with the triggering

rules set in the Eq. (24). In RL-eMPC method, the triggering

rule is more flexible, which is based on the trained Q-values.

Different from eMPC method, the MPC controller is trig-

gered in RL-eMPC method before the traffic density over

the critical density or the queue length over the maximum

limit value. Optimal control actions are applied in advance

to adjust traffic flow.

Due to the flexibility and foresight, the RL-eMPC method

demonstrates better performance in terms of improving traf-

fic efficiency. As shown in Table 1, by applying RL-eMPC

method, the TTT can be reduced around 3.8% and 2.1% in

comparison to NC and eMPC methods respectively. The to-

tal cost (mainly including TTT and the penalty factor for

queuing over the limit) can be reduced around 11.3% and

5.6% in comparison to NC and eMPC methods respectively.

As shown in Fig. 4, Fig. 5 and Fig. 6, the queue length over

the maximum limit is suppressed by applying eMPC and

RL-eMPC methods. The suppression effect of RL-eMPC

method is more pronounced in comparison to eMPC method.

5 Conclusion

In this paper, a novel learning-based and model-based ap-

proach to the highway local ramp metering problem that

combines MPC and RL. By leveraging RL agent to ad-

just the triggering command based on observed states, the

MPC controller is triggered reasonably to improve closed-

loop performance while balancing computation cost. The

results show that the proposed RL-eMPC method can signif-

icantly improve traffic efficiency, thanks to the optimal con-

trol sequence of MPC and the intelligent triggering rule of

RL agent. Future work directions include: 1) the use of dif-

ferent RL algorithms to capture the nonlinear triggering rule;

2) the application of the proposed RL-eMPC framework to

different highway traffic control strategies and larger scale

highway networks.
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